Graph and Depth of a Monomial Squarefree Ideal

نویسنده

  • DORIN POPESCU
چکیده

Let I be a monomial squarefree ideal of a polynomial ring S over a field K such that the sum of every three different ideals of its minimal prime ideals is the maximal ideal of S, or more generally a constant ideal. We associate to I a graph on [s], s = |MinS/I|, on which we may read the depth of I. In particular, depthS I does not depend on char K. Also we show that I satisfies Stanley’s Conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding the Projective Dimension of a Squarefree Monomial Ideal via Domination in Clutters

We introduce the concept of edgewise domination in clutters, and use it to provide an upper bound for the projective dimension of any squarefree monomial ideal. We then compare this bound to a bound given by Faltings. Finally, we study a family of clutters associated to graphs and compute domination parameters for certain classes of these clutters.

متن کامل

The Monomial Ideal of a Finite Meet-semilattice

Squarefree monomial ideals arising from finite meet-semilattices and their free resolutions are studied. For the squarefree monomial ideals corresponding to poset ideals in a distributive lattice the Alexander dual is computed.

متن کامل

Janet’s Algorithm

We have introduced the Janet's algorithm for the Stanley decomposition of a monomial ideal I ⊂ S = K[x 1 , ..., x n ] and prove that Janet's algorithm gives the squarefree Stanley decomposition of S/I for a squarefree monomial ideal I. We have also shown that the Janet's algorithm gives a partition of a simplicial complex.

متن کامل

On the Stanley Depth of Squarefree Veronese Ideals

Let K be a field and S = K[x1, . . . ,xn]. In 1982, Stanley defined what is now called the Stanley depth of an S-module M, denoted sdepth(M), and conjectured that depth(M) ≤ sdepth(M) for all finitely generated S-modules M. This conjecture remains open for most cases. However, Herzog, Vladoiu and Zheng recently proposed a method of attack in the case when M = I/J with J ⊂ I being monomial S-ide...

متن کامل

Embedded Associated Primes of Powers of Square-free Monomial Ideals

An ideal I in a Noetherian ringR is normally torsion-free if Ass(R/I) = Ass(R/I) for all t ≥ 1. We develop a technique to inductively study normally torsion-free square-free monomial ideals. In particular, we show that if a squarefree monomial ideal I is minimally not normally torsion-free then the least power t such that I has embedded primes is bigger than β1, where β1 is the monomial grade o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012